

1. Introduction

- I. What is CoolGap?
- II.Why Coolgap?
- 2. Working principles.
- 3. Configurations.
- 4. Applications.
- 5. Manufacturing.
- 6.Simulations.
- 7.Results (tests)
- 8. Conclusions (operational challenges).

Introduction: Global electric car

stock

Hyundai

Tesla Tesla Hyundai Kona Electric fire - First Model3 reported in Ulsan Model S & X plant Hyundai Hyundai Kona Electric Exploded - Second fire - Caught on fire in a parking reported in Ulsan while parked while plant - Fire while (Pittsburgh) charging parked at full - Sudden fire at (Shanghai) charge (SK) BMW negative Burned down due Kona Electric Kona Electric Porsche ambient to a fire after Tesla temperature full charge in - Exploded due to - Fire while (Lake Champain) charging a in a Unprovoked charging - Exploded in an station (SK) fire, unplugged BMW i8 Taycan taxi company underground - Fire while (Montreal) (SK) garage charging (SK) - Fire while (Shangai) Exploded - Fire while - Bega to smoke Model S charging (SK) - Caught on fire while parked while in the car charging (Jeju) - Fire while parked while - Fire while (Florida) dealership. - Sudden fire parked (SK) (HK) parked (SK) Placed in a when driving - Fire while Burned down _ - Fire while water tank to (LA) charging in while prevent battery charging in a underground supercharging from exploding rapid charging parking (SK) (Belgium) (Netherlands) service - Fire while - Burst into - Recall of driving flames while 77 000 Kona Evs charging (England) 2019 2020 2021

What is Coolgap?

Coolgap is an **indirect liquid cooling** system that consists on a **snake-shaped duct** that removes heat directly from the source.

Heat generated in core gap

Case external view

Liquid surrounds the heat source

Why Coolgap?

- IC core and copper losses significantly increase with temperature.
- Liquid cooling becomes necessary when significantly increasing **power**
- density Temperatures in excess of 45°C will rapidly degrade battery lifetime.
- Liquid cooling is much more efficient than gas cooling.

Working principles

Coolant	Flow type	e.g.	h*	Efficiency	
Gas	Free	Passive heatsink	2 to 25	Low	
	Forced	Fan, RDHx (rear door heat exchangers)	25 to 250		
	Free	Static immersion	50 to 1000		
Liquid	Forced	Pump, closed loop or immersion	100 to 20000	↓	
*h = heat	Phase _{tr} chan _s ge _{rœffi}	2-Phase inmersion	2000 to 100000	High	

(W/m2K)

Configurations

OPTION 1: CRU

Compact Refrigeration Unit (CRU) Liquid Liquid CoolGap bobbin

Configurations

OPTION 2: SEPARATE CIRCUIT

Configurations

OPTION 3: THERMOSYPHON

Configurations summary

OPTION 1: CRU

OPTION 2: SEPARATE CIRCUIT

OPTION 3: THERMOSYPHON

Applications

Thermal runaway

- 1. Heating starts.
- 2. Protective layer breaks down.
- Electrolyte breaks down into flammable gases.
- 4. Separator melts, possibly causing a short circuit.
- 5. Cathode breaks down, generating oxygen.

Prototype manufacturing

Printed part (clear resin). Duct cleaning.

CoolMag injection.

Manufacturing challenges

- Inflection point difficult to calculate.
- Closed loop difficult to manufacture with injection process.
- 3D printing resins have low thermal conductivity.

Simulation settings:

- Inlet velocity: 1 m/s.
- Outlet: Ambient pressure.
- Turbulent model: Zero Equation.

Poor duct design leads to:

- Not homogeneous mass flow.
- Undesired pressure drops.
- Increased speed and erosion in elbows.

1.-Coolant flow separates in inner elbow radious.

2.-Recirculating flow generates cavitation zone in elbow. 3.-Effective cross section is reduced.

4.-Flow accelerates in elbow. 5.-Higher speed leads to higher erosion rate in outer elbow. 6.-Elbow failure

* Turbulence generators can be added to avoid this adverse effects.

- Customers use to set maximum pressure drop through part to 100mbar.
- 3D power first version: 0.5 to 0.6 m/s maximum coolant speed.
- Well designed duct lead to lower pressure drops and enables higher mass flux.

Choke temperature without Coolgap: 84,2°C.

Choke temperature with Coolgap: 47,4°C.

36,8 °C reduction! (44%)

3DP temperature without Coolgap: 150,4°C.

3DP temperature with Coolgap: 50,3°C.

100°C reduction! (67%)

Compatibility

	Туре	Water	Ethylene glycol	Propylene glycol	Mineral oil	Refrigerant s	Dielectri cs
Polymers	Commodity plastics	А	А	В	A	F	В
	Engineered thermoplastic	Α	Α		A	A to F	
	Elastomers	А	Α	А	A	A to F	A to F
Metals	Aluminium		А		A	A	A
	Brass (plated)	Α	Α		A	A	A
	Copper			А		A	A
	Stainless steel	А			A	A	A
A Good compatibility			B Poor compatibility		F Bad compatibility		

Conclussions

Heat removed directly from source

Global weight and volumen reduction

Multiple configurations available

Diversification: Coolgap technology can be applied to other fields

Good duct design leads to higher dissipation and less erosion

Up to 100°C tested temperature reduction

Challenges to tackle: deterioration, leaks, particles...

Thanks!

info@coolgap.net

ana.ferrer@coolgap.net

